
p2b: A Translation Utility for Linking Promela and
Symbolic Model Checking

(Tool Paper)

Michael Baldamus1 and Jochen Schr¨oder–Babo

University of Kalsruhe, Institute for Computer Design and Fault Tolerance
P.O. Box 6980, 76128 Karlsruhe, Germany
fbaldamus,schrbabog@ira.uka.de

Abstract. p2b is a research tool that translates Promela programs to boolean
representations of the automata associated with them. These representations con-
form to the input syntax of the widely–used symbolic model checker SMV; it is
then possible to verify the automata with SMV, as opposed to enumerative model
checking with SPIN, the classical Promela verifier. SMV and SPIN are focussed
on verifying branching or linear time temporal properties, respectively, and of-
ten exhibit different performance on problems that are expressible within both
frameworks. Hence we envisage that p2b will provide the missing link in estab-
lishing a verification scenario that is based on Promela as modeling language,
and where one chooses different logics and verification methods as needed. The
present paper provides an introduction to p2b, a description of how it works and
two benchmark examples.

1 Introduction

An important ingredient of model checking is an expressive language that can be used
for model description. Such a language must have a precise semantics, yet it must also
be suitable for its application domain and easy to use. Promela [7], the input language
of the SPIN model checker [8], is an asynchronous concurrent modeling language. It
naturally does have a precise semantics and it arguably fulfills the other criteria too.
SPIN then performs enumerative model checking of linear time temporal properties
(LTL) over Promela programs. Two major optimizations realized by SPIN are on–thy–
fly state space traversal and partial order reduction; they shorten runtime often dramati-
cally. Mur' [5] is another well–known enumerative model checker that contains several
optimizations of the basic procedure. Successful applications in various practical fields
have shown how powerful enumerative model checking can be.

That success, however, does not come in all cases. A property may hold, for in-
stance, meaning that it doesa priori not help that on–the–fly traversals often find coun-
terexamples without visiting every state that is relevant. Moreover, partial order reduc-
tion may greatly reduce the number of relevant states, but the method requires specific

1 Michael Baldamus’s work is supported by the Deutsche Forschungsgemeinschaft within the
Project Design and Design Methodology of Embedded Systems.

1



preconditions with regard to the way processes communicate with each other: the effi-
ciency gain suffers the more communication relationships violate those conditions.

Another method besides the enumerative one is symbolic model checking [4,10]. Its
basic idea consists of working with reduced ordered binary decision diagrams (BDDs,
[3]) to represent finite automata and sets of states. The “secret” is partly that many sys-
tems with large state spaces can be represented with comparatively small BDDs; besides
that, most algorithms on BDDs have moderate complexity. Hence it has been possible
to verify practical examples whose state sets are astronomically large. The main appli-
cations of symbolic model checking have to date been in verifying synchronous digital
hardware. There are, however, encouraging results on verifying also asynchronous and
interleaved processes [6,1,9,2], as they are typical for software–like systems. This situa-
tion was the reason for us to develop p2b. The objective was to perform symbolic model
checking on such systems and, at the same time, to profit from Promela’s versatility as
a modeling language.

Efficient symbolic model checkers are readily available. The easiest way to achieve
the objective of p2b is therefore to translate Promela programs to boolean representa-
tions of the automata associated with them, as symbolic model checkers usually under-
stand this kind of input. More specifically, p2b generates code that adheres to the input
syntax of the well–known and widely–used symbolic model checker SMV [10].

With SPIN, p2b and SMV, we have carried out various experiments. They indi-
cate that enumerative and symbolic model checking may indeed exhibit rather different
efficiency when applied to the automaton of one and the same Promela program. Some-
times SPIN is significantly faster, sometimes SMV. (cf. Section 3). Another possible
benefit from p2b consists of the fact that symbolic model checking is first and foremost
concerned with branching time temporal properties, as opposed to the LTL world to
which SPIN belongs. Hence we envisage that p2b will provide the missing link in es-
tablishing a verification scenario that is based on Promela as modeling language, and
where one chooses different logics and verification methods as needed.

We have to mention that SMV starts the actual model checking procedure strictly
after it has built the BDD that represents the automaton of the model under considera-
tion. For this reason, it may be somewhat difficult to represent a dynamically evolving
system of concurrent processes. Such systems, on the other hand, can easily be modeled
with Promela with the help of the keywordrun, which spawns a new process instance.
p2b does not support this feature at the moment. In consequence, p2b accepts Promela
models whose process instances —proctype instances in Promela terminology — can
easily be determined before verification or simulation takes place. To our experience,
many practical systems fall into this category, notably within the realms of embedded
systems and communication protocols.

The remainder of the present paper is structured as follows: Section 2 describes
the basics of how p2b works; Section 3 presents two benchmark examples, the dining
philosophers problem and a mutual exclusion protocol over asynchronous channels;
Section 4 briefly concludes the paper.

The p2b homepage is located at
http://goethe.ira.uka.de/�baldamus/p2b.

It is possible to download the package from a subpage there.

2



2 How p2b Works

p2b is a command line utility. It works in batch mode in the sense that a run consists
of parsing a Promela program and generating ASCII output that conforms to the input
syntax of the SMV model checker. The basic idea is to identify every proctype instance
of the program. The automaton of each individual instance is described in isolation;
by putting together these descriptions, the automaton of the program as a whole is
described.

2.1 SMV Code Generated by p2b

Then the raw structure of the output will in general be as follows:

MODULE main

VAR
� declarations of current state variables�

INIT
� initialization of current state variables�

DEFINE
� boolean equations�

TRANS
� top expression�

SPEC
� temporal formula�

Only theSPEC part may be missing (see Section 2.1.4). In the sequel of this subsection,
we briefly discuss each individual part.

2.1.1 Variables and Variable Initialization If P is the program, then the output rep-
resents the automaton ofP employingcurrent state variables andnext state variables to
encode automaton states. First of all there are boolean variables that mostly correspond
to control flow locations of the proctype instances ofP but may also have auxiliary
roles. Besides that, there may bedata variables, which correspond to data variables and
channel entries inP. The ordinary, explicitly declared SMV variables of both kinds are
the current state variables. For every such variable, sayx, there is a unique next state
variable, which appears in the SMV code asnext(x). p2b does not have to allocate
any next state variable since SMV does that automatically. The current state variables
are declared in theVAR part; their initial values are assigned in theINIT part. This
assignment encodes the initial state of the automaton ofP.

2.1.2 Boolean Equations The variable declarations and initializations are followed
by aDEFINE part. This part contains a collection of equations of the formidentifier :=
boolean expression. Every right hand side may contain state variables or identifiers

3



defined by other expressions. The collection of equations is essentially a bottom-up
description of the automata of the proctype instances ofP. To give an impression
of that, letA be an active proctype inP that hask instances,k � 1, and let l1,
. . . , ln be the control flow locations inA, n � 1. Then there are equations of the
form A i-lj enabled- := boolean expression for all i 2 f1; : : : ; kg and all j 2
f1; : : : ; ng; they become true iff the corresponding control flow location is enabled.
There are also equations of the formA i-at-lj := boolean expression for all i 2
f1; : : : ; kg and allj 2 f1; : : : ; ng; these ones describe the local and global effects of
a transition ofA that starts at the respectivelj , referring toA i-lj enabled- on the
right hand side. Furthermore, there are equations of the form

A i- :=

n_
j=1

A i-at-lj

for all i 2 f1; : : : ; kg, describing the entire automaton of the respective instance ofA.
Besides that, there are equations of the formA i-idle- := boolean expression for all
i 2 f1; : : : ; kg; their role is to describe the idling of the corresponding instance ofA if
another proctype instance is active.

2.1.3 Top Expression Apart from the equation system, there is a top expression,
which puts all proctype instance automata together. This expression makes up the con-
tent of theTRANS part. To see what it basically looks like, letpre1, . . . , prem be the
identifier prefixes that correspond to proctype instances ofP, m � 1. — An example of
such a prefix isA i, i 2 f1; : : : ; kg. — Then the top expression has the form

0
@

m_
i=1

0
@prei-

^
j2f1;:::;mgnfig

prej-idle-

1
A
1
A _ Term;

whereTerm is an expression that describes the idling of the entire system once every
proctype instance has terminated. The idea is that a transition of the automaton ofP, as
long as it has not terminated, involves a transition of the automaton of some proctype
instance ofP and, at the same time, leaves all other instances idle. This scheme works
under the assumption that all channels have a capacity of at least one, meaning that
there is no synchronization via channels. At the moment, p2b does indeed not support
channels of capacity zero. To our experience, this restriction is not too severe in terms
of what Promela models of practical systems can still be translated with p2b.

2.1.4 Optional Temporal Specification SMV can read temporal formulas that are to
be verified, so p2b also allows the user to include such a temporal specification in the
Promela code as a specific pragma ignored by SPIN. The pragma must appear at the
end of the input file, and it must be of the form

/*p2b: SPEC � temporal formula� */:

The formula contained in it will appear at the end of the output file behind the keyword
SPEC. Non–trivial temporal properties will usually be formulated with the help of the
variables from theVAR part.

4



2.1.5 Complexity of the Translation The complexity of the translation is quadratic
in the number of proctype instances; the reason of that is the syntactic structure of the
top expression in theTRANS part. The complexity of generating the output up to and
including theDEFINE part is linear in the number of proctype instances.

2.2 Supported Constructs

p2b rejects every input rejected by SPIN. The current version of p2bdoes not accept
every input accepted by SPIN either, since it does not support all Promela constructs.
This situation is mostly due to the limited manpower that could be allocated to the
p2b project; it is only to a small extent due to any principal difficulty in translating
Promela in the way adopted for p2b, that is, by generating a boolean representation of
the program automaton over current and next state variables. The constructs supported
by the current version are as follows:

– Data Types The supported data types arebit, bool, byte, short andint.
– Channels and Variables Channels must have a capacity of at least 1 and must

be global. Variables may be either global or local. The–variable is supported.
– Expressions p2b supports numeric constants, the usual boolean and arithmetic

operators, bracketing, variable access and theempty, nempty, full, nfull
and?[..]–operators for channel polling including theeval constraint in the case
of ?[..].

– Elementary Statements p2b supportsskip, assignments, expressions that ap-
pear as statements, standard send and receive operations on channels including
eval, goto, thexs, xw andxu declarations,printf andassert. Among
these statements,xs, xw andxu declarations andprintf do not affect sym-
bolic model checking, so they are treated likeskip. assert is also treated like
skip, as this statement runs somewhat contrary to the paradigm of breadth–first
search used in symbolic model checking. If the functionality ofassert is de-
sired, then it should mostly be possible to use a temporal specification instead (see
Section 2.1.4).

– Statement Constructors p2b supports sequential composition,if..fi,
if..::else..fi, do..od, do..::else..od, atomic, unless and{..}.

– Labeling p2b supports labels wherever SPIN permits labels in Promela code.
– Proctypes p2b supports active proctypes with and without numeric instantiators.

Non–active proctypes — andinit–sections — will be supported oncerun is
supported (cf. Section 1).

– never–Claims, trace and notrace p2b ignores anynever–claim as well
astrace andnotrace. Temporal properties to be verified by SMV should be
specified using the pragma described in Section 2.1.4.

– #define p2b supports C–style macros.

2.3 Specifying Variable Ranges

Symbolic model checking is sometimes affected by the fact that the representation of
data operations may lead to large BDD sizes. A prime example is multiplication, since

5



in its case every BDD representation must be exponential in the width of the data path.
For this reason, symbolic model checking may be greatly helped if it is known to what
extent the data variables of the program are utilized. p2b allows the user to supply such
information by means of pragmas that are ignored by SPIN. Such a construct has the
form

/*p2b:� smallest possible value� ..� highest possible value� */

and may occur behind the typesbyte, short andint. Its effect is that p2b generates
syntax that instructs SMV to allocate just enough BDD variables to accommodate the
specified range.

3 Benchmark Examples

We have studied several examples with p2b. In each case we have verified a Promela
program or a class of such programs with SPIN and — after translation — with SMV.
This section reports on our results with regard to two scalable examples, the dining
philosophers problem and a mutual exclusion protocol over asynchronous channels.
We used SPIN V. 3.4.3 and Cadence Berkeley SMV V. 08-08-00p3 on an 800 MHz
Pentium III processor under Linux with 700 MB of available RAM.

3.1 The Dining Philosophers Problem

The model of the dining philosophers problem represents philosophers as proctypes and
chop sticks as channels of capacity one. As chop sticks can be considered passive items,
we contend that this kind of model is natural. Due to the ring topology of the problem,
every channel is then shared by two proctypes, which both read from and sent to the
channel. Figure 1 shows measurements obtained from a solution without deadlock; the
deadlock–preventing component is a dictionary, which is also represented as a channel
of capacity one. All proctypes initially try to read from that channel or from a channel
representing a chop stick. Only one proctype can succeed in reading from the channel
representing the dictionary and it will write back to this channel before trying to read
from any other one. Furthermore, the initial read from a channel representing a chop
stick is guarded by the condition that the channel representing the dictionary be empty.

The result of this experiment was that SMV was significantly faster than SPIN from
seven philosophers onwards. Moreover, SPIN ran out of memory from ten philosophers
onwards even when compression was turned on. This situation was probably due to the
combination of two facts: first, the on–the–fly strategy could not bear fruit since the
property to be verified always held; second, the exclusive send and the exclusive read
condition with regard to channels are violated in all cases, so partial order reduction
was less effective than usual.

3.2 A Mutual Exclusion Protocol over Asynchronous Channels

We have observed converse tendencies in the case of a mutual exclusion protocol over
asynchronous channels (Figure 2). That protocol consists ofn processes that commu-
nicate with an arbiter via channelsai, bi andc, 1 � i � n, where each channel is of

6



0

500

execution
time in
seconds
Æ SPIN
+ SMV

2 10number of processes
Æ Æ Æ Æ Æ Æ

Æ

Æ

+ + + + + + +
+

+

Fig. 1. Execution time measurements from verifying a deadlock–free solution to the
dining philosophers problem. SMV was used via its graphical interface and the fol-
lowing options were set: Use heuristic variable ordering, Use modified search order,
Restrict model checking to reachable states, Turn off transition relation clustering, Turn
off conjunctively partitioned relations, Turn off partitioned relations. The other options
of the graphical interface were not set.

capacity one. A processPi sends its request for entering a critical section to the arbiter
via ai; the arbiters elects one such process, sayPj , and sends it a grant for entering the
critical section viabj . That process sends a notification viac to the arbiter once it has
left the critical section.

0

15execution
time in
seconds
Æ SPIN
+ SMV

2 10number of processes

Æ Æ Æ Æ Æ Æ Æ Æ Æ

+ + + + + + +

+

+

Fig. 2. Execution time measurements from verifying a mutual exclusion protocol over
asynchronous channels.

As shown by the figure, SPIN’s execution time remained virtually constant over the
scaling range considered in the experiment. SMV’s execution time, by contrast, was
significantly higher for ten processes and showed a clear tendency to staying so for
larger numbers of processes. This situation was probably due to the fact that nearly all
communication relationships in the model satisfy the exclusive send or the exclusive
read condition, meaning that partial order reduction could be effective.

7



4 Conclusion

The preceding sections have given an introduction to the objective of p2b, which con-
sists of linking Promela and symbolic model checking. It was also described how p2b
works and two scalable benchmark examples were presented. From the first example,
we conclude that it indeed makes sense to supplement enumerative model checking of
Promela programs with symbolic model checking; from the second example, however,
we conclude that p2b will not entail that enumerative model checking is replaced by
symbolic model checking.

As for future work, it would of course be desirable to extend the range of Promela
constructs supported by p2b. Another topic might consist of incorporating results on
the combination of partial order reduction and symbolic model checking [1,9].

References

1. R. Alur, R. Brayton, T. Henzinger, S. Qadeer, and S. Rajmani. Partial–Order Reduction
in Symbolic State Space Exploration. InComputer–Aided Verification, pages 340–351.
Springer–Verlag, 1997. Proceeding CAV ’97.

2. M. Baldamus and K Schneider. The BDD Space Complexity of Different Forms of Concur-
rency, 2001. Accepted for ICACSD ’01.

3. R. Bryant. Graph–Based Algorithms for Boolean Function Manipulation.IEEE Transactions
on Computers, C-35(8):677–691, 1986.

4. J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic Model Checking:10
20

States and Beyond. InLogic in Computer Science, pages 1–33. IEEE Computer Society
Press, 1990. Proceedings LICS ’90 symposium.

5. D. Dill, A. Drexler, A. Hu, and C. Han Yang. Protocol Verification as a Hardware Design
Aid. In Computer Design: VLSI in Computers and Processors, pages 522–525, 1992. IEEE
Conference Proceedings.

6. R. Enders, T. Filkorn, and D. Taubner. Generating BDDs for Symbolic Model Checking in
CCS. InComputer–Aided Verification, LNCS 575, pages 203–213. Springer–Verlag, 1991.
Proceedings CAV ’91 conference.

7. G. Holzmann.Design and Validation of Computer Protocols. Prentice Hall, 1991.
8. G. Holzmann. The Model Checker SPIN.IEEE Transactions on Computer Engineering,

23:279–295, 1997.
9. Kurshan, R. and Levin, V. and Peled, D. and Yenig¨un, H. Static Partial Order Reduction.

In Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1384, pages
345–357. Springer–Verlag, 1998. Proceedings TACAS ’98 conference.

10. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

8


